Feast your eyes! Equivalence of Zero | Desmos
This was the latex that was used:
\left\{\operatorname{floor}\left(-\left(10^{-3}\operatorname{ceil}\left(\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k=\frac{\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k_{1}=1}^{12}e^{\pi}k_{1}}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k_{1}=1}^{2}\frac{\left(-1\right)^{k_{1}}}{k_{1}^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{6}}^{2\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k_{1}=1}^{12}e^{\pi}k_{1}}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k_{1}=1}^{2}\frac{\left(-1\right)^{k_{1}}}{k_{1}^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}e^{\pi}k}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)^{2}+\frac{\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}{\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)}\cdot9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)-\frac{3!}{2}\right)\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}dd_{4}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1\operatorname{ceil}\left(\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k=1}^{12}e^{\pi}k}\cdot10^{18}\right)}{1100+\operatorname{ceil}\left(\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k=\frac{\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k_{1}=1}^{12}e^{\pi}k_{1}}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k_{1}=1}^{2}\frac{\left(-1\right)^{k_{1}}}{k_{1}^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{6}}^{2\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k_{1}=1}^{12}e^{\pi}k_{1}}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k_{1}=1}^{2}\frac{\left(-1\right)^{k_{1}}}{k_{1}^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}e^{\pi}k}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)^{2}+\frac{\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}{\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)}\cdot9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)-\frac{3!}{2}\right)}\right)^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}dd_{4}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)^{2}+\frac{\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}{\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)}\cdot9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)-\frac{3!}{2}\right)\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\cdot\frac{\left(\frac{\left(\left(\frac{\left(\operatorname{round}\left(52-2\left(\left(\sum_{n=2}^{10}\frac{\left(\frac{n^{\pi}}{4}\right)^{3}}{\prod_{i=3}^{11}i^{7}}\right)\cdot10^{43}\right)\right)-1\right)}{2}+\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)\right)^{6\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{\left(\sqrt{\ln\left(e^{e^{e}}\right)^{e^{e}}\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}dd_{4}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1}\right)^{\frac{3}{4}}\cdot1.759\int_{-7}^{10\pi}\frac{68}{0.22}dx\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}dd_{4}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1}\cdot\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)^{-1.5}\right)}{\left(\int_{1}^{8}e^{-t}dt\right)\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}dd_{4}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1}\right)\right)\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}dd_{4}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+110^{9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)^{\operatorname{floor}\left(-\left(10^{-3}\operatorname{ceil}\left(\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k=1}^{12}e^{\pi}k}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)^{2}+\frac{\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}{\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)}\cdot9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)-\frac{3!}{2}\right)\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\cdot\frac{\left(\frac{\left(\left(\frac{\left(\operatorname{round}\left(52-2\left(\left(\sum_{n=2}^{10}\frac{\left(\frac{n^{\pi}}{4}\right)^{3}}{\prod_{i=3}^{11}i^{7}}\right)\cdot10^{43}\right)\right)-1\right)}{2}+\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)\right)^{6\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{\left(\sqrt{\ln\left(e^{e^{e}}\right)^{e^{e}}}\right)^{\frac{3}{4}}\cdot1.759\int_{-7}^{10\pi}\frac{68}{0.22}dx}\cdot\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)^{-1.5}\right)}{\left(\int_{1}^{8}e^{-t}dt\right)\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{0}}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}dd_{4}\int_{\int_{0\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx_{9}}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{9}}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1}\right)\right)}}\operatorname{floor}\left(-\left(10^{-3}\operatorname{ceil}\left(\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k=1}^{12}e^{\pi}k\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{0}}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}dd_{4}\int_{\int_{0\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx_{9}}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{9}}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)^{2}+\frac{\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}{\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)}\cdot9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)-\frac{3!}{2}\right)\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\cdot\left(\frac{\left(\frac{\left(\left(\frac{\left(\operatorname{round}\left(52-2\left(\left(\sum_{n=2}^{10}\frac{\left(\frac{n^{\pi}}{4}\right)^{3}}{\prod_{i=3}^{11}i^{7}}\right)\cdot10^{43}\right)\right)-1\right)}{2}+\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)\right)^{6\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{\left(\sqrt{\ln\left(e^{e^{e}}\right)^{e^{e}}}\right)^{\frac{3}{4}}\cdot1.759\int_{-7}^{10\pi}\frac{68}{0.22}dx}\right)}{\left(\frac{\left(\left(\frac{\left(\operatorname{round}\left(52-2\left(\left(\sum_{n=2}^{10}\frac{\left(\frac{n^{\pi}}{4}\right)^{3}}{\prod_{i=3}^{11}i^{7}}\right)\cdot10^{43}\right)\right)-1\right)}{2}+\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)\right)^{6\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{\left(\sqrt{\ln\left(e^{e^{e}}\right)^{e^{e}}}\right)^{\frac{3}{4}}\cdot1.759\int_{-7}^{10\pi}\frac{68}{0.22}dx}\cdot\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)^{-1.5}\right)}\cdot\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)^{-1.5}\right)\frac{\left(\frac{\left(\left(\frac{\left(\operatorname{round}\left(52-2\left(\left(\sum_{n=2}^{10}\frac{\left(\frac{n^{\pi}}{4}\right)^{3}}{\prod_{i=3}^{11}i^{7}}\right)\cdot10^{43}\right)\right)-1\right)}{2}+\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)\right)^{6\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{\left(\sqrt{\ln\left(e^{e^{e}}\right)^{e^{e}}}\right)^{\frac{3}{4}}\cdot1.759\int_{-7}^{10\pi}\frac{68}{0.22}dx}\cdot\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)^{-1.5}\right)}{\left(\int_{1}^{8}e^{-t}dt\right)}\right)\right)\frac{\operatorname{floor}\left(-\left(10^{-3}\operatorname{ceil}\left(\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k=1}^{12}e^{\pi}k}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)^{2}+\frac{\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}{\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)}\cdot9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)-\frac{3!}{2}\right)\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\cdot\frac{\left(\frac{\left(\left(\frac{\left(\operatorname{round}\left(52-2\left(\left(\sum_{n=2}^{10}\frac{\left(\frac{n^{\pi}}{4}\right)^{3}}{\prod_{i=3}^{11}i^{7}}\right)\cdot10^{43}\right)\right)-1\right)}{2}+\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)\right)^{6\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{\left(\sqrt{\ln\left(e^{e^{e}}\right)^{e^{e}}}\right)^{\frac{3}{4}}\cdot1.759\int_{-7}^{10\pi}\frac{68}{0.22}dx}\cdot\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)^{-1.5}\right)}{\left(\int_{1}^{8}e^{-t}dt\right)}\right)\right)\left(\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)+9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)+\frac{\left(\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)+9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)\right)}{\operatorname{ceil}\left(\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k=1}^{12}e^{\pi}k}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)^{2}+\frac{\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}{\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)}\cdot9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)-\frac{3!}{2}\right)}+\frac{\left(\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)^{-1.5}\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)+9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{0}}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}dd_{4}\int_{\int_{0\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx_{9}}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{9}}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1\right)-\frac{\left(\frac{\left(\frac{\left(\sum_{n=1}^{9}n\int_{0}^{\pi}3dx+\frac{\ln\left(e\right)}{\log_{\pi}\left(\frac{8}{\sum_{n=3}^{9}\int_{0}^{1}\frac{98}{\sqrt{\frac{4!!}{89\int_{-\frac{e\pi}{4}}^{\ln\left(\frac{e}{\frac{32}{7}}\right)}.45dx_{1}}}}dx}\right)}^{3}\right)}{\left(\prod_{n=1}^{3}\frac{1}{n}\right)^{-1}}-17\frac{\ln\left(e\right)}{\log_{\pi}\left(\frac{8}{\sum_{n=3}^{9}\int_{0}^{1}\frac{98}{\sqrt{\frac{4!!}{\operatorname{round}\left(\frac{45}{2^{\left(2+1\right)}}\right)}}}dx}\right)}\right)}{\frac{6\pi}{18\int_{-\frac{22}{7}+\left(\frac{1}{2}\right)^{\sqrt{\frac{4!!}{\int_{-\frac{e\pi}{4}}^{\ln\left(\frac{e}{8.3}\right)}.45dx_{1}}}}}^{3}\sum_{n=1}^{3}\prod_{k=1}^{3}kdx}}\right)}{\sum_{d_{3030499030493}=\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{0}}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}dd_{4}\int_{\int_{0\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx_{9}}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{9}}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1}^{30}\frac{d_{3030499030493}}{d_{3030499030493}\cdot10}d_{3030499030493}}\right)}{-e^{\ln\left(e\right)}\frac{\left(\left(\frac{\left(\operatorname{round}\left(52-2\left(\left(\sum_{n=2}^{10}\frac{\left(\frac{n^{\pi}}{4}\right)^{3}}{\prod_{i=3}^{11}i^{7}}\right)\cdot10^{43}\right)\right)-1\right)}{2}+\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)\right)^{6\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{\left(\sqrt{\ln\left(e^{e^{e}}\right)^{e^{e}}}\right)^{\frac{3}{4}}\cdot1.759\int_{-7}^{10\pi}\frac{68}{0.22}dx}\sum_{d_{3030499030493}=1}^{30}\frac{d_{3030499030493}}{d_{3030499030493}\cdot10}d_{3030499030493}}-\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx}dd_{4}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)+\sum_{d_{3030499030493}=\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{458}}^{\int_{1-\int_{0}^{1}dd_{4589}}^{1}dd_{458}}dd_{457}}dd_{456}}dd_{45}\int_{\int_{-1}^{1}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{0}}^{\int_{-1}^{\int_{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}^{\int_{-1}^{1}dd_{23}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{23}}dx_{9}}dd_{4}\int_{\int_{0\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{4}}dx_{9}}dd_{2}\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd_{2}}dx_{9}}dd\int_{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}^{\int_{\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}^{1\int_{-1}^{1}dy\int_{\int_{-1}^{1}dn}^{\int_{-1}^{1}dn}dd_{1}}dd}dx+1}^{30}\frac{d_{3030499030493}}{d_{3030499030493}\cdot10}d_{3030499030493}\right)}{\prod_{k=1}^{2}k\operatorname{round}\left(\log_{4}\left(\frac{\sum_{n=3}^{15}n^{\pi}}{2}\right)^{3}\right)+9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)}>0:1,0\right\}+\operatorname{ceil}\left(\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=2\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n_{2}=4}^{17}n_{2}^{e\pi}\right)}{\prod_{k_{1}=1}^{12}e^{\pi}k_{1}}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k_{1}=1}^{2}\frac{\left(-1\right)^{k_{1}}}{k_{1}^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}^{17}n^{e\pi}\right)}{\prod_{k=\frac{\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k_{1}=1}^{12}e^{\pi}k_{1}}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k_{1}=1}^{2}\frac{\left(-1\right)^{k_{1}}}{k_{1}^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}{6}}^{2\left(\operatorname{round}\left(\frac{\left(\frac{\left(\sum_{n=4}^{17}n^{e\pi}\right)}{\prod_{k_{1}=1}^{12}e^{\pi}k_{1}}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k_{1}=1}^{2}\frac{\left(-1\right)^{k_{1}}}{k_{1}^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)}e^{\pi}k}\cdot10^{18}\right)}{1100}\right)^{\operatorname{round}\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}\right)^{2}+\frac{\left(\int_{0}^{\pi}\left(\frac{\sin x}{x+1}+\sum_{k=1}^{2}\frac{\left(-1\right)^{k}}{k^{2}+1}+\frac{d}{dx}\left(\int_{1}^{x}e^{-t}dt\right)\right)dx\right)}{\operatorname{round}\left(\int_{1}^{10}\frac{\left(x^{5}e^{x}+\sin^{2}x+\frac{\ln x}{x^{2}}\right)}{10^{6}}dx+567\right)}\cdot9404\operatorname{round}\left(\int_{0}^{2}\left(\sin\left(x\right)-x^{3}+e^{x^{2}}-\frac{d}{dx}\left(x^{4}\ln\left(x+2\right)\right)\right)dx\right)-\frac{3!}{2}\right)-2